China best Motorcycle Parts Timing Teeth General Hardware 25 Roller Chain

Product Description

SMCC are 1 professional  industry rollor chain factory ,  We have stamping, heat treatment, sorting, synthesis and other advanced production equipment.The company boasts several large precision advanced equipments, mordern methods for cess and precision instruments, so as to insure the good quality of our rollor chains.Our rollor chains are widely used in motorcycle, combine harvester, metallurgical machinery, mining equipment, automated production line. We are the best suppliers of Chinese largest palletizing robot enterprises. And replace Japan, ZheJiang exported to Europe, America, Asia and other countries and regions.

Model NO.: 04B-48B
Tensile Strength: 70.00kn~2490kn
Structure (for Chain): Roller Chain
Origin: China
Material: Stainless Steel
Made Style: Manufacture and OEM
Transport Package: Wooden Case/Container

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Warranty: 1 Year
Transmission Type: Flexible
Automatic Production Line: Comprehensive
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

toothen chain

Can Toothed Chains be Used in High-Speed Applications, and Limitations to Their Speed

Yes, toothed chains can be used in high-speed applications, but there are certain limitations to consider. Toothed chains are commonly employed in various industrial machinery and equipment where reliable power transmission is required at high speeds. However, their suitability for high-speed applications depends on several factors:

  • Chain Type: Different types of toothed chains have varying speed capabilities. For example, roller chains are commonly used in high-speed applications due to their smooth operation, while silent chains or inverted tooth chains may have limitations at higher speeds.
  • Design and Quality: The design and manufacturing quality of the toothed chain play a crucial role in its ability to handle high speeds. Precision manufacturing and quality materials are essential to reduce vibration, noise, and wear at high speeds.
  • Lubrication: Proper lubrication is vital for reducing friction and wear in toothed chains operating at high speeds. Insufficient or improper lubrication can lead to accelerated wear and potential failure.
  • Tension and Alignment: Maintaining proper tension and alignment of the chain is critical at high speeds. Inadequate tension or misalignment can cause the chain to jump or derail from the sprockets.
  • Temperature: High-speed operations can generate significant heat due to friction. Ensure that the operating temperature remains within the chain’s specified limits to prevent premature wear or failure.

Limitations to Their Speed:

  • Dynamic Loading: At high speeds, the dynamic loading on the toothed chain increases significantly. This can lead to higher stress levels on the chain’s components, potentially causing fatigue and reducing the chain’s life.
  • Vibration and Noise: Toothed chains operating at high speeds can generate increased vibration and noise. Excessive vibration can be detrimental to the chain’s performance and may affect the surrounding machinery.
  • Centrifugal Force: At high speeds, centrifugal force can impact the chain’s behavior, causing it to stretch and potentially come off the sprockets if not adequately tensioned.
  • Wear and Fatigue: High-speed applications can accelerate wear and fatigue in the chain, necessitating more frequent inspections and maintenance.

Conclusion: Toothed chains can be used in high-speed applications, but their performance is subject to various factors and limitations. To ensure safe and reliable operation at high speeds, it’s essential to select the appropriate chain type, maintain proper tension and alignment, use quality materials, and provide adequate lubrication. Regular inspections, monitoring, and preventive maintenance are vital to address wear and mitigate the effects of high-speed operation on toothed chains.

toothen chain

Calculating Tension and Sag in a Toothed Chain for Proper Installation and Operation

Proper tension and sag are essential for the successful installation and operation of a toothed chain. The tension ensures that the chain engages properly with the sprockets, while the sag allows for smooth motion and compensates for temperature changes and elongation. Here’s how you can calculate the tension and sag:

  • Tension Calculation:
  • The tension in a toothed chain can be calculated using the following formula:

    T = (F * r * μ) / (2 * C * cos(β))
    • T is the tension in the chain (in Newtons, N).
    • F is the driving force or load (in Newtons, N) applied to the chain.
    • r is the radius of the driving sprocket (in meters, m).
    • μ is the coefficient of friction between the chain and sprocket.
    • C is the center distance between the driving and driven sprockets (in meters, m).
    • β is the angle of chain wrap around the sprocket (in radians).
  • Sag Calculation:
  • The sag in a toothed chain can be calculated using the following formula:

    S = L - (2 * C * sin(β/2))
    • S is the sag in the chain (in meters, m).
    • L is the total length of the chain (in meters, m).
    • C is the center distance between the driving and driven sprockets (in meters, m).
    • β is the angle of chain wrap around the sprocket (in radians).

Conclusion: Calculating the tension and sag in a toothed chain is crucial for proper installation and operation. The tension ensures the chain engages with the sprockets effectively, while the sag allows for smooth motion and compensates for temperature changes and elongation. By following the appropriate formulas and considering the driving force, sprocket radius, coefficient of friction, center distance, and chain length, you can achieve optimal tension and sag in the toothed chain, leading to reliable and efficient operation in various applications.

toothen chain

How does a toothed chain differ from other types of chains, such as roller chains or conveyor chains?\

\

A toothed chain, also known as a timing chain or synchronous chain, differs from other types of chains like roller chains and conveyor chains in its design, purpose, and applications:

\

\Toothed Chain (Timing Chain):\

\

    \

  • Design: A toothed chain has tooth-like profiles on its inner surface, which mesh with corresponding sprockets.\
  • \

  • Purpose: The primary purpose of a toothed chain is to provide precise timing and motion control in mechanical systems. It ensures accurate synchronization between the driving and driven components.\
  • \

  • Applications: Toothed chains are commonly used in automotive engines to synchronize the camshaft and crankshaft. They also find applications in various industries that require precise motion control and synchronization, such as industrial automation, printing, and packaging.\
  • \

\

\Roller Chain:\

\

    \

  • Design: A roller chain consists of cylindrical rollers that engage with the teeth of sprockets, enabling smooth and efficient power transmission.\
  • \

  • Purpose: Roller chains are primarily used for power transmission in a wide range of applications, including bicycles, motorcycles, conveyors, and industrial machinery.\
  • \

  • Applications: Roller chains are found in many industries for transmitting power from one shaft to another. They are commonly used in conveyor systems, manufacturing equipment, and agricultural machinery.\
  • \

\

\Conveyor Chain:\

\

    \

  • Design: Conveyor chains are designed to have special attachments or links that allow them to carry and transport materials along a conveyor system.\
  • \

  • Purpose: The main purpose of conveyor chains is to move materials from one location to another within a conveyor system. They are suitable for horizontal, inclined, or vertical conveying applications.\
  • \

  • Applications: Conveyor chains are extensively used in industries such as mining, packaging, food processing, and automotive manufacturing, where continuous material handling is required.\
  • \

\

In summary, toothed chains are distinct from roller chains and conveyor chains in terms of their design and primary functions. Toothed chains provide precise timing and synchronization, roller chains are focused on power transmission, and conveyor chains are specialized for material handling in conveyor systems.\

China best Motorcycle Parts Timing Teeth General Hardware 25 Roller Chain  China best Motorcycle Parts Timing Teeth General Hardware 25 Roller Chain
editor by CX 2023-08-29

toothen chain

As one of leading toothen chain manufacturers, suppliers and exporters of products, We offer toothen chain and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of toothen chain

Recent Posts